

E246200 VLSI Circuits Design (Digital Integrated Circuits) Spring, 2019

張順志 (Soon-Jyh Chang) Email: soon@mail.ncku.edu.tw

February 20, 2019

What is VLSI?

VLSI_Circuits

- VLSI stands for <u>Very</u> <u>Large</u> <u>Scale</u> Integration
- Integration of what? \Rightarrow Integration of circuits
- What are circuits? \Rightarrow Transistors and wires. Also, some resistors, capacitors and inductors.

So, you know

- Integrated circuits (ICs): many transistors / wires / passive components on one chip.
- Very Large Scale Integration (VLSI): very many

Why Integrated Circuits?

VLSI_Circuits

S.J.Chang/EE/NCKU

- Small, fast, low energy consumption, and cheap!
 - Create components in parallel, cost no longer \propto # of devices

Circuit Cost =
$$\frac{\text{Circuit Area}}{\text{Wafer Area}} \times \text{Fabrication Cost}$$

- A device area = 10 μ m × 10 μ m
- An 8-inch wafer area = $\pi \times (0.1 \text{ m} \times 0.1 \text{ m})$
- Process cost = NT\$ 50000 (typically, \$500 \$3000)
 - \Rightarrow Device cost NT\$ 0.00016
 - \Rightarrow Cost of on-chip devices << Cost of off-chip devices

For the same circuit

- On-chip devices \uparrow and off-chip devices $\downarrow \Rightarrow$ Cost \downarrow
 - \Rightarrow High integration trend

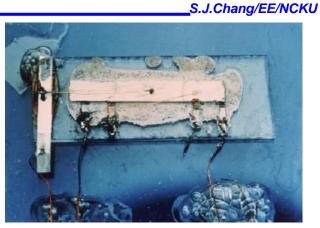
A Brief History of ICs (1/2)

VLSI_Circuits

- Vacuum tubes ruled in first half of 20th century
 - Large, expensive, power-hungry, unreliable
- 1925: Field Effect Transistor theoretical development
 - by Julius Lilienfeld
- 1935: Modern FET structure
 - by Oskar Heil
 - Materials problems foiled early attempts to make functioning devices
- 1947: First point contact transistor
 - Invented by John Bardeen, Walter Brattain and William Shockley at Bell Labs (got Nobel prize)

A Brief History of ICs (2/2)

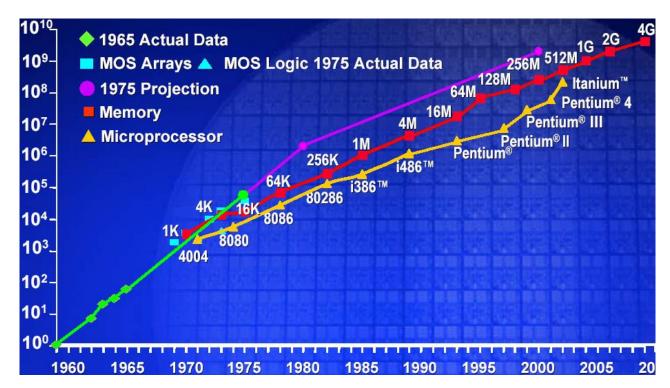
VLSI_Circuits


- 1958: First integrated circuit
 - Flip-flop using two transistors
 - Built by Jack Kilby at Texas Instruments

2019

- CPU: Graphcore GC2 IPU (16nm, 23.6 billion trs.)
- GPU: Nvidia Volta V100 (12 nm, 21.1 billion trs., 5120 cores)
- FPGA: Xilinx Versal/Everest (7 nm, 50 billion trs.)

> 50% compound annual growth over 50 years


No other technology has grown so fast for so long

Moore's Law

S.J.Chang/EE/NCKU

- In 1965, Gordon Moore predicted that the number of transistors that can be integrated on a die would double every 18 months (i.e., grow exponentially with time).
 - Actually, double every 26 months (slow-down?)

Source: ISSCC 2003, G. Moore "No exponential is forever, but 'forever' can be delayed"

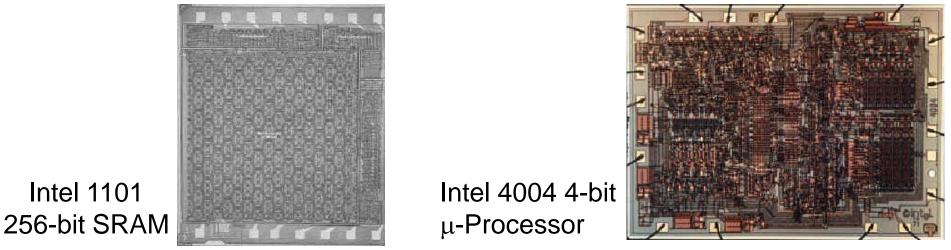
_S.J.Chang/EE/NCKU

Transistor Types

Bipolar transistors

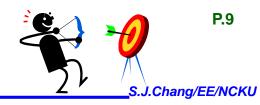
VLSI Circuits

- *npn* or *pnp* silicon structure
- Small current into very thin <u>base</u> layer controls large currents between <u>emitter</u> and <u>collector</u>
- The quiescent power dissipated by the base currents limits integration density


 Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)

- nMOS and pMOS
- Voltage applied to insulated <u>gate</u> controls current between <u>source</u> and <u>drain</u>
- Lower quiescent power consumption allows very high integration

MOS Integrated Circuits


VLSI_Circuits

- 1960's processes used only pMOS transistors
 - Suffered from poor performance, yield, and reliability.
- 1970's processes usually had only nMOS transistors
 - Inexpensive, but consume power while idle

- 1980s-present: CMOS processes were widely adopted for low idle power
 - CMOS stands for <u>C</u>omplementary <u>M</u>etal <u>O</u>xide <u>S</u>emiconductor.

Course Objective

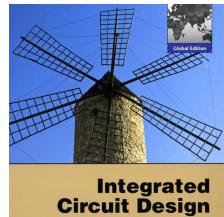
- To explore the design aspects involved in the realization of integrated circuits from device up to the system level
- It addresses major design methodologies with emphasis placed on structured full custom design
- It is expected to enhance the following knowledge/skills for the students
 - The models for state-of-the-art VLSI components, fabrication steps, layout technique, hierarchical design flow
 - Design and implement CMOS digital circuits and optimize them with respect to different constraints: size (cost), speed, power dissipation, and reliability
 - The VLSI CAD tool

VLSI Circuits

Course Syllabus (1/2)

VLSI_Circuits

- Class Time: Wed. 9:10~12:00
- Classroom: Room 92225
- Instructor: 張順志
 - Email: <u>soon@mail.ncku.edu.tw</u>
 - Office: Room 95507 TEL: 06-2757575 ext. 62380
 - Office Hour: 14:00~17:00 on Wednesday and Thursday
- TA: 林柏翰、陳盈秀、邱薪育、何偉立、許哲維
 - Lab.: Room 95504
 - TEL: 06-2757575 ext. 62400 ext. 2810
- Prerequisites: An undergraduate-level course in electronic circuits and logic design.

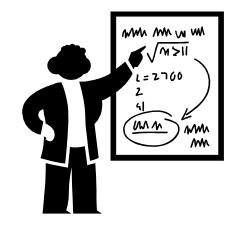

Course Syllabus (2/2)

VLSI Circuits

- Recommended Textbook
 - Neil H. E. Weste and David Money Harris, "Integrated Circuit Design: 4th Edition," Addison Wesley, 2010, ISBN: 0321547748

Reference

- R. Jacob Baker, "CMOS: Circuit Design, Layout," and Simulation, 3rd Edition," Wiley-IEEE, 2010, ISBN-13: 978-0470881323
- Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, "Digital Integrated Circuits: A **Design Perspective**, 2nd edition", Prentice Hall, 2003, ISBN:0130909963


Neil H E Weste

Course Contents

VLSI_Circuits

- Introduction
- CMOS fabrication
- CMOS layout
- Devices
- Speed
- Power
- Wires
- Gates

- Sequencing
- Datapaths
- Memories
- Packaging, Power, Clock, I/O

Schedule

VLSI_Circuits_

S.J.Chang/EE/NCK				
	Note			
	CAD tools training course; Homework #1 announced			

Week	Date	Lecture	Note
1	2/20	Course overview	
2	2/27	Introduction to VLSI Design	
3	3/6	Fabrication	CAD tools training course; Homework #1 announced
4	3/13	Layout	
5	3/20	Devices	
6	3/27	Speed	Homework #1 due; Homework #2 announced
7	4/3		校際活動週(停課)
8	4/10	Power	
9	4/17	Wires	Homework #2 due; Homework #3 announced
10	4/24	Midterm Exam.	
11	5/1	Gates	
12	5/8	Scaling & Realiability	
13	5/15	Sequencing	Homework #3 due; Homework #4 announced
14	5/22	Datapaths	
15	5/29		停課一週
16	6/5	Memories	Homework #4 due; Homework #5 announced
17	6/12	Packaging, Power, Clock, I/O	
18	6/19	Final Exam.	9:10 ~ 11:00 exam.; Homework #5 due

VLSI_Circuits

Grading Policy

- Five Homeworks (50%)
- Participation & Quiz (20%)
- One Midterm Exam (15%)
 - April 24
- One Final Exam (15%)
 - June 19
- Course Website
 - http://moodle.ncku.edu.tw/

This course has great materials, so HAVE FUN!